

Personal Protective Equipment (PPE)

Good Practice Guidance on controlling exposure to chemicals that cause platinum sensitisation

Content

1. Glossary	3
2. Introduction	4
3. PPE Legal Requirements and Quality Standards	5
4. Assessing PPE Needs	6
5. Types of PPE for Worker Protection	12
6. PPE Zones	19
7. Provision of PPE	21
8. Use of PPE	22
9. Disposal of Disposable PPE	26
10. Cleaning and Storage of Reusable PPE	27
11. Training	29
12. Audit questions (optional)	30

DISCLAIMER: This guidance document has been prepared by industrial hygiene practitioners working in the platinum group metals (PGM) industry for the benefit of other professionals responsible for controlling industrial workplace exposures to chloroplatinates. The document should not be relied upon as a substitute for appropriate professional expertise. The information in this document does not constitute legal or mandatory advice; it is for information purposes only and should not be construed to be either comprehensive nor advice or recommendation of any kind. Any reader/user should consult their own local experts, scientific advisers and legal counsel or appropriate regulatory authorities to ensure compliance with applicable laws and regulations, and seek to have professionally checked by suitably qualified experts the suitability of the information within this document for the intended use. Neither the contributors to this document nor the International Platinum Group Metals Association assumes any liability for any errors or omissions or for any personal injury, physical harm and any loss or damages of whatsoever nature that have been caused by or in connection with the use of the information contained within this document.

© IPA 2025 - All rights reserved.

No part of this document may be reproduced in any form (e.g. photocopy, microfilm or other procedure) or processed, duplicated or distributed in any form or by any means, whether electronic, mechanical, by recording or otherwise, without prior written permission of IPA.

1. Glossary

PGM Platinum Group Metals

PPE Personal Protective Equipment

RPE Respiratory Protective Equipment

SDS Safety Data Sheet

2. Introduction

Workplaces may have various hazards such as:

Sharp edges

Falling objects

Sparks

Chemicals

Noise

Employers are responsible for protecting employees from these hazards by following the hierarchy of controls. If a hazard cannot be eliminated or replaced, engineering controls should be used to minimise exposure.

It's best to control the hazard at its source, such as containing hazardous substances so no one is exposed to them. Depending on the specific hazard, workplace conditions, and job requirements, engineering and administrative controls can be used to manage hazards effectively (e.g. limiting workers' time in certain areas). When these controls are not feasible, or are deemed inadequate, employers must provide and ensure the use of personal protective equipment (PPE) to minimise exposure to hazards. PPE refers to equipment worn by employees to protect them from various hazards.

MOST EFFECTIVE

a. ELIMINATION

Physically remove the hazard

b. SUBSTITUTION

Replace the hazard

c. ENGINEERING CONTROLS

Isolate people from the hazard

d. ADMINISTRATIVE CONTROLS

Change the way people work

e. PPE/RPE

Protect the worker with Personal Protective Equipment or Respiratory Protective Equipment

First try Elimination

Eliminate risks

If Elimination is not reasonably practicable

Consider Substitution
Apply Engineering control measures

If there is still risk

Apply administrative control measures

If the risk remains - PPE is the last line of defence

Use Personal Protective Equipment (PPE), including Respiratory Protective Equipment (RPE)

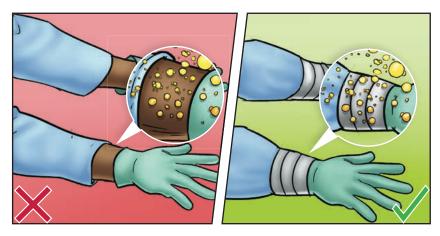
LEAST EFFECTIVE

This guidance explains the selection and use of PPE to limit exposure to chloroplatinates and prevent worker sensitisation. However, when choosing PPE, all potential hazards workers may encounter in their job or specific tasks must be considered. It's also important to consider the worker's comfort, ability to perform their job and communicate with colleagues while wearing PPE. This guidance also covers ways workers may be exposed to chloroplatinates, associated toxicity hazards, risk assessment, and the selection and use of PPE.

3. PPE Legal Requirements and Quality Standards

Different regions where platinum group metals (PGMs) are processed have specific laws and regulations regarding personal protective equipment (PPE) requirements, as well as quality standards, for example the European CE mark. It is crucial to understand and comply with all applicable legislation, at a minimum.

4. Assessing PPE Needs


4.1 Exposure to chloroplatinates

a) Inhalation

The main way chloroplatinates enter the body is through inhalation. Dust or aerosols in the workplace can be inhaled, making respiratory protective equipment (RPE) essential. Please see our guidance: Respiratory Protective Equipment (RPE) Good Practices.

b) Skin contact

Chloroplatinates can also be be absorbed through the skin, which could lead to sensitisation of the respiratory tract. Follow PPE requirements to prevent skin exposure.

Chloroplatinates can also be absorbed through the gastrointestinal tract if ingested. Avoid touching the face or mouth when working with chloroplatinates, and thoroughly clean hands and wrists after removing PPE before eating, drinking or smoking.

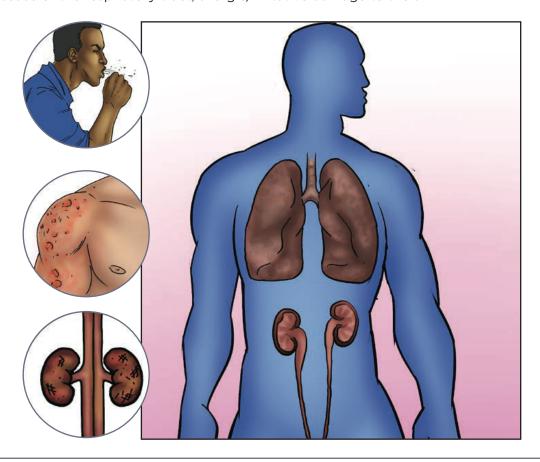
4.2 Toxic effects

The toxicity hazards of chloroplatinates depend on the specific substance, its physical form, and concentration. These must be understood and considered in the risk assessment when selecting PPE.

Safety Data Sheets (SDSs) provide information on hazard classifications and toxicity. The information below is what is typically found in SDSs for common chloroplatinates, such as ammonium, sodium, and potassium salts of hexachloroplatinate and tetrachloroplatinate. Other chloroplatinates and compounds may differ and require evaluation by an appropriately qualified expert.

Hazard classifications

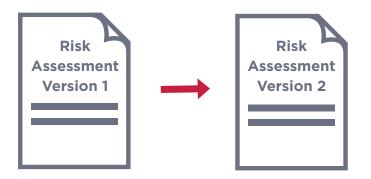
Code	Hazard statement
H290	May be corrosive to metals
H301	Toxic if swallowed
H317	May cause an allergic skin reaction
H318	Causes serious eye damage
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled
H372	Causes damage to organs (kidney) through prolonged or repeated exposure


Acute toxic effects

- Irritation or corrosion of the mucous membranes and skin.
- Sensitisation/allergic reactions to the airways/skin.
- Following substantial intake, metabolic disorders, disturbances to the nervous system and functional disturbances to the kidneys may result.

Chronic toxic effects

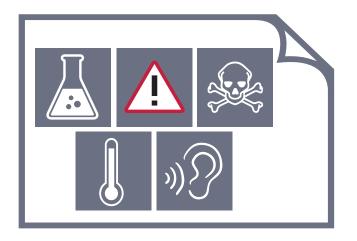
Allergic disease of the respiratory tract, allergic/irritative damage to the skin.



4.3 Risk assessment

An individual with the appropriate skills must perform a risk assessment for selecting PPE. The assessment must identify potential hazards associated with each task, involving relevant stakeholders such as EHS representatives, workers, first-line management, department heads, and workers' representatives, if applicable.

The risk assessment must be updated when tasks or workplace conditions change, or if the current PPE is no longer suitable.


Risk assessments must be written down and made available after completion and review to all relevant parties.

The evaluation team:

- 1. Conducts a walkthrough of the work area and task to be performed.
- 2. Identifies potential hazards employees may face during work activities or while present in the work area.

3. Describes and documents the present hazards (chemical, physical, thermal, auditory, etc.).

If the hazards cannot be eliminated or substituted with lesser hazards, and engineering controls and organisational measures cannot reduce the risks to an acceptable level, PPE is required to protect employees.

MOST EFFECTIVE

a. **ELIMINATION**

Physically remove the hazard

b. SUBSTITUTION

Replace the hazard

c. ENGINEERING CONTROLS

Isolate people from the hazard

d. ADMINISTRATIVE CONTROLS

Change the way people work

e. PPE

Protect the worker with Personal Protective Equipment

First try Elimination

Eliminate risks

If Elimination is not reasonably practicable

Consider Substitution
Apply Engineering control measures

If there is still risk

Apply Administrative control measures

If the risk remains - PPE is the last line of defence

Use personal protective equipment (PPE)

LEAST EFFECTIVE

Assessing PPE needs (continued)

PPE should not be the only form of protection. PPE must be used together with safeguards, engineering controls, and good operating practices.

PPE selection must prioritise maximum protection while also ensuring comfort and the ability to perform duties.

A suitably-trained person must instruct employees how to use, care for and properly fit PPE at the start and then as needed.

First-line management and the qualified person must ensure employees understand PPE manufacturer's warning labels and provide training on PPE limitations/Assigned Protection Factor (APF).

5. Types of PPE for Worker Protection

Below is information on the typical PPE needed for handling chloroplatinate substances like solids, fluids, suspensions, and sludges. Depending on other risks and task-based risk assessments, additional PPE such as hearing protection, hard hats or specialised PPE may also be necessary.

It is crucial to ensure that the selected types of PPE and specific products are compatible with each other. PPE items should not interfere with each other's effectiveness. Some PPE products can serve dual purposes. For example, if a risk assessment determines that a half-mask respirator and chemical goggles are needed to be worn, it's important that they can be comfortably worn together and function properly. In such cases, a full-face respirator may be a better choice as it can fulfil both needs effectively.

5.1 Eye protection

Safety glasses

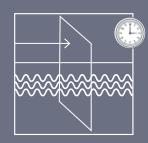
Wear safety glasses, the minimum eye protection required, when handling small amounts of material (e.g. laboratory samples).

Chemical goggles

Wear chemical goggles if there is the potential for spray/splash of liquid chemicals (especially acids and caustics) or flying particles, fragments, objects, large chips, sand, or dirt.

Face shield

Wear a face shield if there is a high potential for eye/face exposure or when working with chemicals under pressure. Always use a face shield in combination with safety glasses or goggles


5.2 Body protection

Acid-repellent clothing

There is a distinct difference between acid-repellent and acid-resistant fabrics and their ability to protect the wearer.

Acid repellent fabrics slow the ingress (wicking and penetration) of corrosive acids and base; it extends the time that the hazardous material reaches the skin.

Acid-resistant fabrics, such as polyester, are more durable and are able to offer better protection against more severe chemicals and acids.

Product specification must be aligned with required protection.

Lab coat

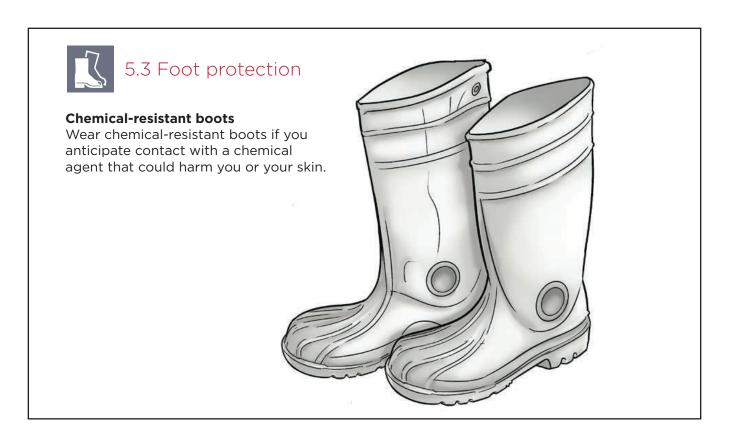
Wear a lab coat when working in a laboratory where small amounts of chemicals are used.

Disposable Chemical-resistant clothing

Wear chemical
-resistant clothing
(e.g. Tyvek suits) if
there is no immediate
risk during the
standard process,
but in case of an
unsafe condition,
incident or event.

Full-body suit for liquid chemical protection

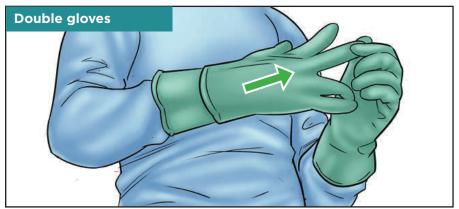
Wear body protection if there is potential for a splash from large amounts of toxic, corrosive, or hot liquids.



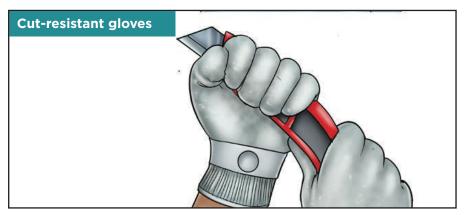
Full-body suit for particle protection

Wear a full body suit for particle protection when in a dusty environment. It is important to ensure that the openings on the sleeves are sealed to prevent dust from entering (e.g. use tape around the wrists).

5.4 Hand protection

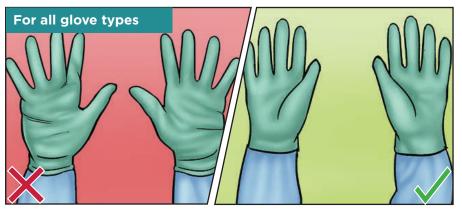


Wear chemical laboratory gloves when handling small amounts of potentially hazardous or corrosive chemicals. Nitrile gloves are recommended as they are also resistant to punctures. Check the chemical resistance and permeation times* of the glove. The glove material must be sufficiently impermeable and resistant to the substance(s) encountered.

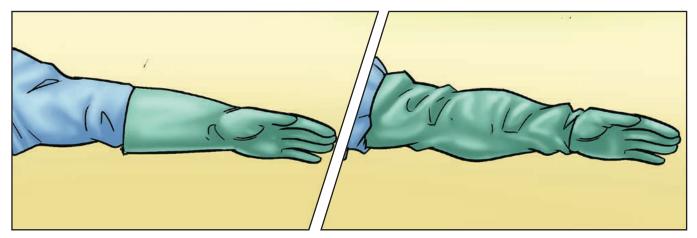


Wear chemical-resistant gloves if you anticipate contact with chemicals. Check the chemical resistance and permeation times* of the glove. The glove material must be sufficiently impermeable and resistant to the substance(s) encountered.


*For example, in Europe: the standard EN 16523-1:2015+A1:2018 relates to the permeation test method used with Personal Protective Equipment (PPE) gloves. It is linked to ISO 374-1:2016+A1:2018. This standard describes the framework, the performance levels, and markings of gloves resistant to chemicals.


Wear double gloves (wear one pair of gloves over another) when you need extra protection and safety. If the outer glove becomes torn or punctured, the inner glove will act as an additional protective barrier. Additionally, if the outer glove becomes contaminated, you can change it easily without fear of the contaminant leaking onto your skin.

Wear cut-resistant gloves when handling objects where there is a potential for abrasions, scrapes, splinters, and scratches that could end in penetration and laceration exposures.



Wear temperature-resistant gloves when handling hot or extremely cold materials. Wearing thin fabric (cotton) gloves or nitrile gloves under heat-resistant gloves may also help offer better protection.

Check that the size is suitable for your hands. If gloves are too tight, they could restrict blood flow and must be avoided.

Consider the length of the glove if wrist protection is needed too. A longer sleeve section will be an advantage in certain instances, or the use of a chemical sleeve can be used.

5.5 Skin care and barrier creams

Pay special attention if you use gloves regularly, because you need to still maintain good skin health and prevent contact dermatitis.

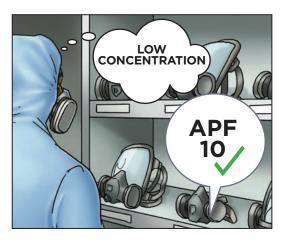
Frequent use of skin-nourishing hand creams (barrier cream) is recommended, and airing out (ventilation) your hands is also important.

5.6 Skin protection plan

A Skin Protection Plan shows the proper selection of skin protection, skin cleansing and skin care products in the workplace and contains the following information:

5.7 Respiratory protection

Please see our guidance: **Respiratory Protective Equipment (RPE) Good Practices** for more detailed guidance.



Filtering face-piece/dust mask Only when exposure levels are already below the acceptable limit may a filtering

below the acceptable limit may a filtering face-piece or dust mask be worn for additional protection.

Never use a dust-mask type respirator as a "required use" respirator.

Ensure you select the correct type of respirator based on the maximum use concentration, as well as proper fit. Test fit before use.

Air-purifying cartridge respirator

Wear an air-purifying cartridge respirator when working in an environment that's above an Occupational Exposure Limit (OEL) for a solid or liquid aerosol, gas, or vapour.

Powered air-purifying respirator

Wear a powered air-purifying respirator when working in an environment that's above an Occupational Exposure Limit (OEL) for a solid or liquid aerosol, gas, or vapour.

Supplied-air respirator

Wear a supplied-air respirator when handling chemicals that cannot be trapped in a cartridge or filter. Supplied air respirators should also be used during an emergency where exposure control is critical.

6. PPE Zones

An expert should assess the PPE requirements for each work area by performing a risk assessment of all potential hazards.

Each workplace with specific PPE requirements should have, and display, a PPE matrix that lists the necessary equipment needed for different activities.

Easy-to-follow maps showing PPE requirements for specific areas, changing areas, and clean areas should be available at key locations, including at the facility's entrance.

The entrance to each work area should have clear signs indicating what the PPE requirements are.

Avoid wearing or bringing potentially contaminated PPE into "clean areas". Exits of work areas that require PPE should have signs indicating the need to remove the PPE before leaving.

Sufficient containers or bins should be available at exits for workers to dispose of used PPE or deposit reusable PPE for cleaning.

"Clean areas", where PPE is not required, should be clearly marked and separated from areas with potential chemical exposure.

An air shower is recommended at the exit of highly exposed areas, industrial (sticky) mats can also help prevent contamination from spreading.

Do not wear or take PPE into break rooms or canteens.
Do not take contaminated PPE home.

Store personal/private clothing separately from work clothes.

7. Provision of PPE

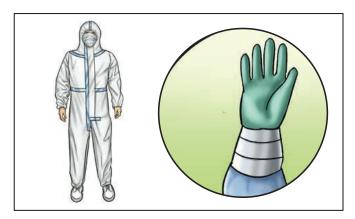
Each user should be provided with:

- Reusable PPE, which should typically include three sets of each item to ensure availability and to facilitate a daily wash exchange (more may be required if cleaning takes more than one day):
 - one to wear
 - one in the wash
 - one in the cupboard/locker
- Dedicated chemical resistant safety shoes for high exposure areas
- A locker to store your reusable PPE

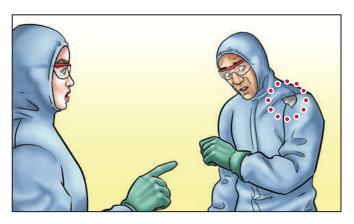
Sufficient supplies of disposable PPE items (e.g. nitrile gloves) must be available in areas where PPE is put on.

Use enclosed cabinets or lockers for storing PPE. High-risk exposure areas should have separate and enclosed storage facilities for PPE.

8. Use of PPE


The type of PPE used at various operations, and sections within operations, may differ. It is imperative that employees receive the correct training on the PPE expected to be used by them – with focus on the correct donning and doffing procedures.

General good practice guidance is provided below on the donning and doffing of PPE for working in areas where sensitising platinum substances are present, focusing on coveralls, gloves and respiratory protection. This may however not be applicable to all situations.


Checking PPE before, during, and after use

You must check your PPE for wear and damage before putting it on. Do not use PPE that is damaged as it won't offer good protection - you must exchange it for new ones.

Ensure you have put on all necessary PPE on correctly (including taping of wrists, (if required)) before entering the work area.

Regularly inspect PPE for new damage during use, especially gloves and replace immediately, if necessary, while still following the proper procedures for taking it off and putting it on.
Ensure shoes are checked, especially if they may have been in contact with a corrosive substance.

Tell your colleagues if you notice that their PPE has become damaged during use.

Donning of PPE (putting on PPE)


Before starting the donning process, make sure that the PPE is clean and that you are in an area where possible contamination is limited. You must put PPE that has previously been used and may be contaminated (e.g. safety shoes and re-usable gloves) on last.

Here's the typical procedure for donning standard PPE:

(Note: this sequence is a typical routine but some sites may differ and offer slightly different types of PPE in different operational areas)

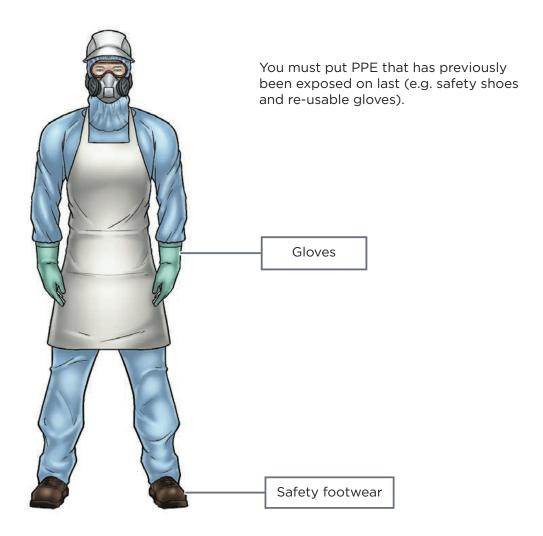
Wash your hands thoroughly to prevent any possible contamination.

Put the disposable suit over your legs.

Put on safety shoes (or shoe covers if applicable).

If double-gloves will be worn, put on the first pair (if only one set of gloves will be worn, put them on at Step 8).

Put your arms into the disposable suit.


Put on the respiratory protection and then eye protection (if it is not a full-face respirator).

Put on the hood and zip up the disposable suit.

Put on the second layer of gloves if applicable (in the event where only one set of gloves are used, put these on now).

Doffing of PPE (taking off PPE)

Before doffing the PPE, make sure you are in an area where further exposure will be limited and where your contaminated PPE will not pose a hazard to unprotected employees.

When taking off PPE, follow the correct procedure and avoid contact with potentially contaminated surfaces of the PPE. Ensure that any potential contamination on PPE doesn't touch the skin, the inside of other reusable PPE (including respiratory protective equipment), or work surfaces.

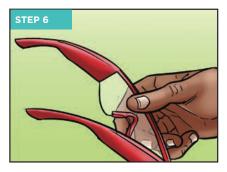
Take off PPE slowly to minimise the release of contaminants into the air.

Here's the typical procedure for doffing standard PPE:

(Note: this sequence is a typical routine but some sites may differ and offer slightly different types of PPE in different operational areas)

Remove and dispose of shoe covers if applicable, or remove safety shoes.

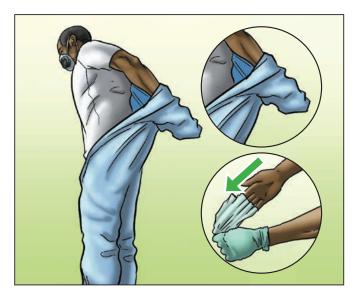
If wearing reusable gloves, clean the gloves thoroughly before removing them and placing them on a glove drying rack.


Remove disposable gloves. Care should be taken that the bare hands do not touch the contaminated parts. Discard disposable gloves in the correct waste bin.

Remove the coveralls (remove the hood, unzip coveralls, remove from shoulders and peel down and away from the body). Dispose of coveralls in the correct waste bin to prevent contamination of other surfaces.

Wash your hands thoroughly to prevent any possible contamination.

Remove eye protection (if it is separate from the respirator) and rinse off.



Remove your respirator (care must be taken to not contaminate unprotected skin). Clean and store respirator as required.

STEP 9

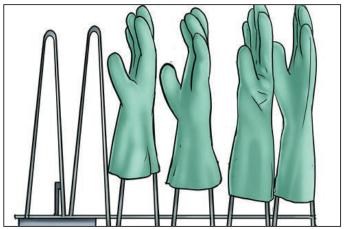
Wash your hands thoroughly to prevent any possible contamination.

Additional guidance on doffing if disposable coveralls and gloves are used (Step 3 and 4):

The preferred method for doffing a disposable coverall and gloves is, with the hands still gloved, balling or rolling in the contaminated surfaces, and pulling the gloves off inside-out as the hands are withdrawn from the coverall sleeves.

The coverall and gloves can then be placed in a disposal receptacle together.

9. Disposal of Disposable PPE


Do not use disposable PPE items more than once.

Place Disposable PPE items in designated bins after use. Polyethylene drums with an inner liner/PE bag is recommended. Containers should be clearly labelled. It is important that containers are regularly emptied and do not overflow. Disposable PPE items may be processed for recovery of PGM contamination.

10. Cleaning and Storage of Reusable PPE

Clean gloves thoroughly before removing them and store them in a well-ventilated area. Using glove racks is recommended.

Place used and taken-off PPE directly into containers for placement or disposal, to reduce handling contaminated clothing.

Safety shoes must be stored separately from other PPE. Shoes must not be stored above shoulder height.

Internal cleaning of reusable/contaminated PPE:

Wash reusable PPE daily, especially for individuals in direct contact with chloroplatinates.

Follow the washing and drying instructions provided by the PPE supplier, including tumble drying if applicable.

Use dedicated containers for used or contaminated PPE. Label the containers appropriately and place them near the area where clothing is changed.

Assess the exposure risk for those handling PPE for laundering, whether they are internal or contracted workers.

External cleaning of reusable/contaminated PPE:

Inform external parties about the risks involved in handling and cleaning potentially contaminated PPE. Help each external company that will handle contaminated PPE (e.g. transport and laundry companies) to complete a risk assessment.

Consider sealed designated containers for contaminated PPE for transport.

11. Training

New employees and existing employees should receive general training on the use of PPE during their induction and annually, if necessary.

All employees who need to use PPE should receive proper training on how to use each item correctly. This includes inspecting the PPE for damage, putting it on and taking it off properly, and cleaning and storing it.

Specialised training on the use and maintenance of PPE in high-risk areas should be conducted at leat once a year.

Regular refresher training should be provided to workers to remind them of the importance of using PPE correctly to prevent platinum sensitisation.

Auditing checks

EHS, supervisors and/or managers should perform regular walkabouts of the facility to:

- Check if PPE is being used correctly
- Offer advice to colleagues if they are not wearing PPE correctly
- Ensure changing facilities are tidy and there are sufficient containers/bins for used PPE (bins are not overflowing)

Supplementary PPE effectiveness checks should be done from time to time by wipe sampling the inside of PPE items or areas of employees' skin (e.g. forearm) that's normally covered by PPE.

Managing PPE as a Critical Contro

Audit Questions (optional)

This section provides example lists of 'Go/No Go' questions that could be implemented as part of job risk assessments and operational documents to help manage PPE as a critical control for controlling exposure to chemicals that cause platinum sensitisation. Example lists of 'Go/No Go' questions are provided for Operators, Superintendents and Managers responsible for installing new equipment and processes. Please refer to the list of questions for the role that most aligns with your role and responsibilities. The question lists are intended to verify that appropriate systems, processes and checks are in place to ensure PPE as a critical control is effective. This includes empowering workers to stop work or not begin a task if a problem is identified.

These question lists are provided as examples. Implementation of such a scheme and the specific questions that would be most appropriate may differ between different companies and sites. Questions should be appropriate and understandable to their target audience and ideally be binary ('Go/No Go'). In implementing such a scheme, consideration should be given to when and how often it is appropriate to ask and answer individual questions. For some questions, such as those relating to checks performed by Operators, it may be appropriate to ask and answer the question each time before commencing a task that uses the critical control to help control exposure to chemicals that cause platinum sensitisation. For other questions, it may be more appropriate to schedule them for daily or weekly checks, while others, such as most of the questions intended for Managers, would be more suitable for attention perhaps quarterly or annually.

Operators

How to use this guide:

- Review each critical control's effectiveness, at their specified frequency, using the questions below.
- If you answer NO to any of the questions, immediate action must be taken to inform your line management to find a suitable temporary fix or permanent solution.

Managing PPE as a Critical Control

1. Availability

Is the correct PPE available for me to use that fits me properly and is comfortable enough for me to wear to do my job and communicate as needed with my colleagues?

Are clean and tidy PPE washing stations available for me to use before and after PPE use?

2. Inspections

Do I inspect my PPE before and after each use to ensure it remains in good condition?

3. Training

Am I familiar with the different PPE requirements for all the tasks I am involved in?

Am I trained and competent on how to inspect, care for, maintain, test and store PPE, according to manufacturer's instructions?

Do I report any issues with my PPE (e.g. poor fit, leaking, damage) to my supervisor?

4. Audits

Do I participate in yearly audits carried out on our PPE program to ensure it's working properly and make any suggestions if anything needs changing or upgrading?

Superintendents

How to use this guide:

- Review each critical control's effectiveness, at their specified frequency, using the questions below.
- If you answer NO to any of the questions, immediate action must be taken to inform your line management to find a suitable temporary fix or permanent solution.
- Communicate this Good Practice Guidance and Audit Questions to Operators and other relevant staff and contractors.

Managing PPE as a Critical Control

1. Availability

Is the correct PPE available for workers to wear that provides adequate protection and meets their individual needs?

Are washing stations and locker rooms available for workers before and after kept clean and tidy?

2. Inspections

Do workers know to inspect their PPE before and after use to ensure they remain in good condition?

3. Training

Have all workers needing PPE been trained on how to inspect, use, care for, maintain, test and store PPE, according to manufacturer's instructions?

Do workers know to report damaged PPE to me to get it replaced?

4. Audits

Do I regularly monitor PPE conditions and to ensure they're in good working order?

Are yearly audits carried out on our PPE program to ensure it's working properly, the results reported to management, and any actions or changes required been completed?

Managers

How to use this guide:

- Review each critical control's effectiveness, at their specified frequency, using the questions below.
- If you answer NO to any of the questions, immediate action must be taken to find a suitable temporary fix or permanent solution.
- Communicate this Good Practice Guidance and Audit Questions to Superintendents, Operators, Maintenance/Engineering, and Industrial/Occupational Hygienists and/or EHS team members.

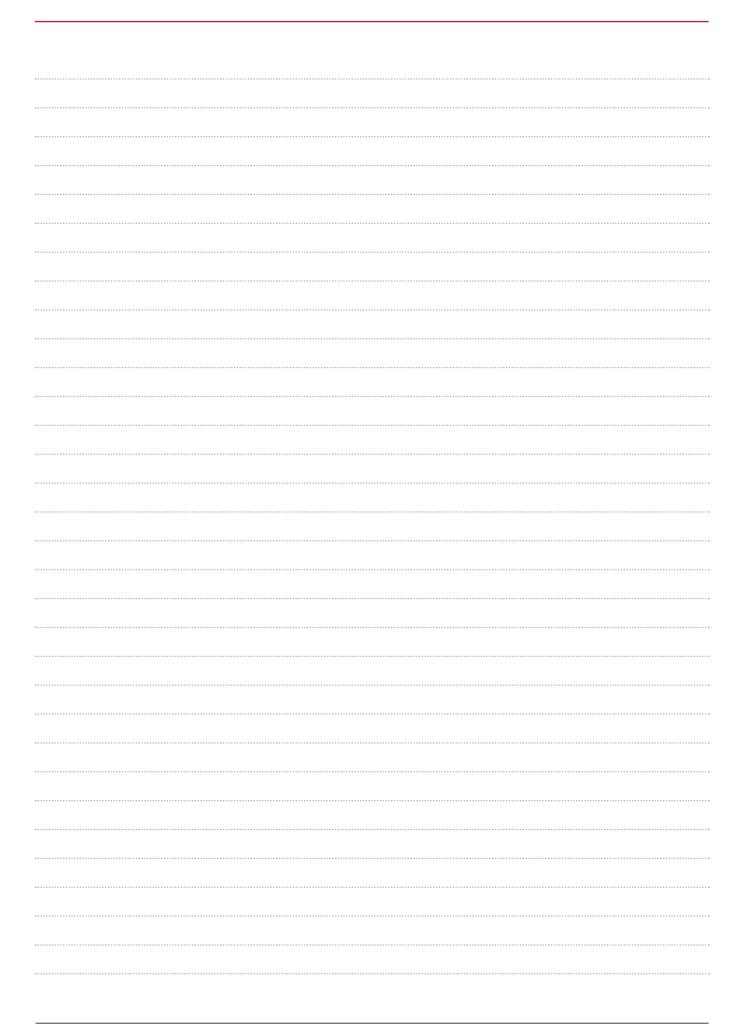
Managing PPE as a Critical Control

1. General Have all areas of the site been risk assessed for chloroplatinate exposure and evaluated for PPE requirements? Are all areas of the site requiring PPE to be worn appropriately signposted? 2. Availabity Is the correct PPE available for workers to wear? YES NO Are suitable washing stations and locker rooms appropriately located in each part of the site for workers to use before and after PPE use? 3. Training Is a training program in place to ensure workers know to inspect, use, care for, YES NO maintain, test and store PPE, according to manufacturer's instructions? Do workers know to report damaged PPE and to get it replaced? YES

4. Audits

Is a program in place that monitors PPE conditions and when to dispose and replace them?

Have I seen the results of the most recent audit of our PPE program and instructed any corrective action required?



Are yearly audits carried out on our PPE program to ensure it's working properly and if anything needs changing or upgrading?

Notes

